Internal Quality Control in the Haemostasis laboratory

Dr Steve Kitchen
Sheffield Haemophilia and Thrombosis
centre & UK NEQAS Blood
Coagulation

The Philadelphia Inquirer

filled Year, No. 65

Sixers Make Trades, Lose MacCulloch

III The Guera bailed Tyrone His and hermine James to the Chesians Caraliers for Met Harping Codic Handwain and History Buylor The Steam aims made a trade wife the Scotler. Califor and amounted they would Lower Tardet MarcCulichter his from aperely Sports, CI.

Votes show Bush's skill in making the big deal

The President can claim two victories in the Boose this week. But more challenges await after his vacation.

He Steven Thomas and Kee Betcheren street state in auditrius? of \$7 fel all WASHINGTON - After a last minute burst of legislative wheeling and Janing Provident Buch hands bome to his Tabes ration flor weekend for vacuumes, confident Analysis that he can play the insade gione of Kuchpapen position but will facing a matter sample

"I was very bitter and shocked. ... I was hysterical."

- Cornella Vitalla, where knowned's death has been linked to on order at St. Agrees

Bulle, at her langua's Contar City office, supe her largely studior and St. Agrees Martical Center's president

St. Agnes efforts only add to anguish after lab error

1st Union wins bid to acquir Wachovia

Arreal SunTrust Banks. gree up after Warbovia's shareholders approved a \$14.3 billion deal with the Phala, area's largest bar

By Paul Novel

WINSTON SALLIM, N.C. - Mos of fighting over necessitip of Was via Curp. seeded about fit yestable na stareholders approved a \$14.3 but marger with first blanc Co. country rived Staffered Raphs Inc. concede defeat.

Just an existin, the Sicce of E Utan thermat Lee Prospect Naches is charges L.M. But he At has some obsided from samply the my the way for the merger to figur not what will happen down the fix

The new best - which will be the Kacheria turns and be here; Charteria, N.C. -- was be the sale South-burgest, with \$121 believe to sate, 19 million capturers on the I Clear, and we pee propieties.

In the Plainbelphia wee, First Co. has 5 No morture in the city and it nando more in the softerine, Road Winnington, and the Treates after claims always were quarter of becal is deposits and up to half of head to tors have sently large as work a pearest rouds, PSC Financial Serv.

Why do we need Quality control?

- Philadelphia Enquirer Aug 4 2001
- Lab used an insensitive "chemical" for 7 weeks believing it to be sensitive.
- Patient questioned escalating coumadin dose
- Patient with "INR" 2.6 bleeding from gums
- INR result at another site 5.7

International Normalised Ratio

Why do we need Quality control?

- PT of 29 sec tested with ISI 1.8
- PT ratio 2.9 (INR 2.9)
- INR calculated used ISI 1.0 INR 2.9
- ISI of 1.8 should have been used
- Overdose of patients
- Amongst 932 patients 5 deaths linked

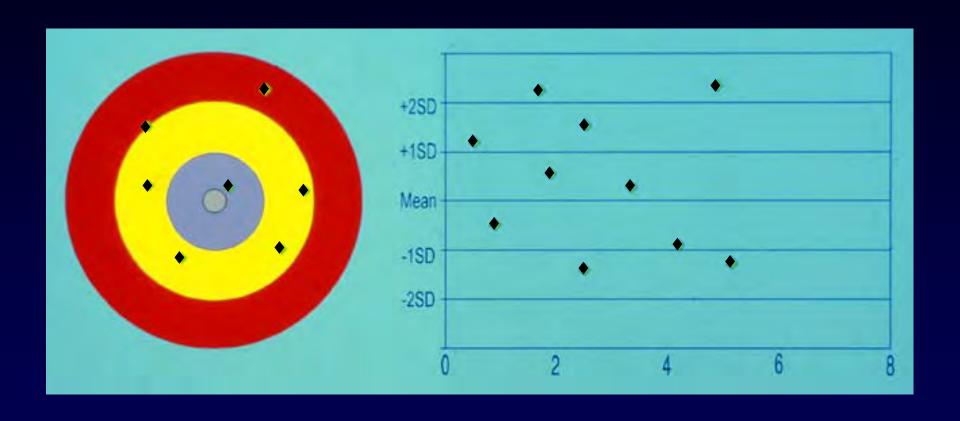
Quality Assurance

measures taken to ensure the reliability of laboratory sampling, testing and reporting

IQC

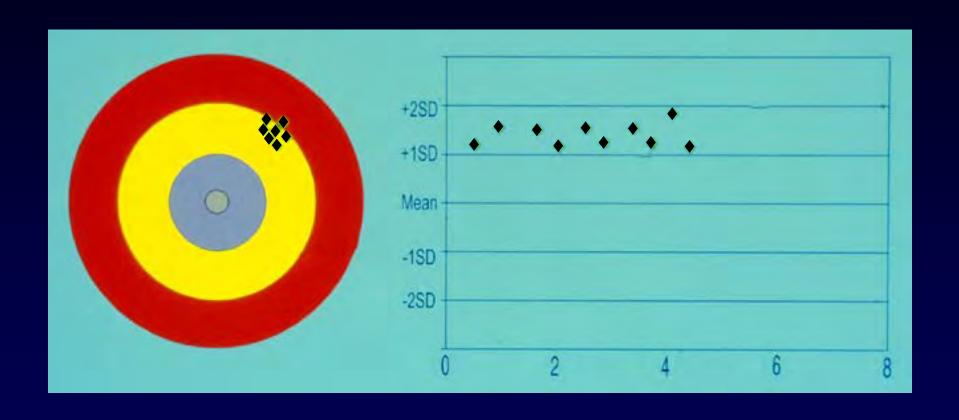
ensures precision and consistency of results for reporting

EQA

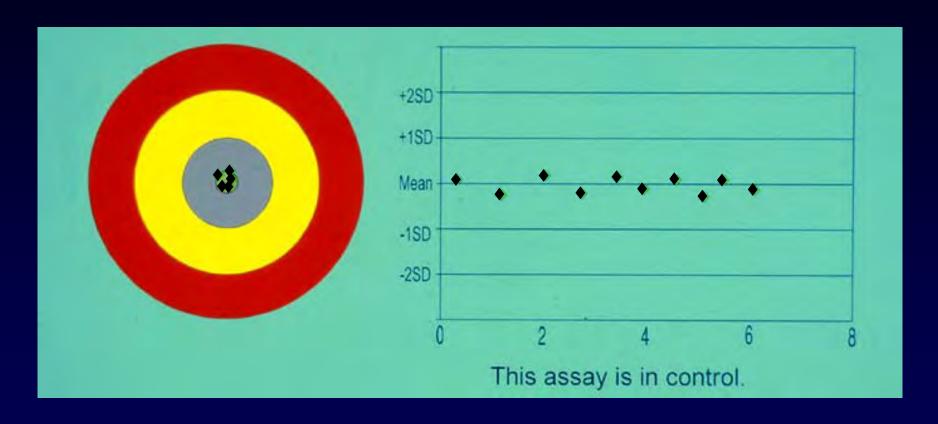

retrospective analysis comparing results between laboratories and between methods

IQC and EQA: Precision and Accuracy

 IQC is required to ensure results are precise. Consistent over time (from day to day etc)


• EQA is required to confirm that results are accurate. Results are in agreement with those in other centres.

Inaccurate and imprecise


This assay is inaccurate and imprecise

Inaccurate but precise

This assay is inaccurate but precise The assay is said to have a positive 'BIAS'

Accurate and precise

The assay producing the results shown is both accurate (i.e. no positive or negative bias) and precise (i.e. very little scatter of results about the mean value)

Quality control materials

Quality Control Material

- A substance used in routine practice for checking the concurrent performance of an analytical process
- It must be similar in properties to and be analysed along with the patient specimens

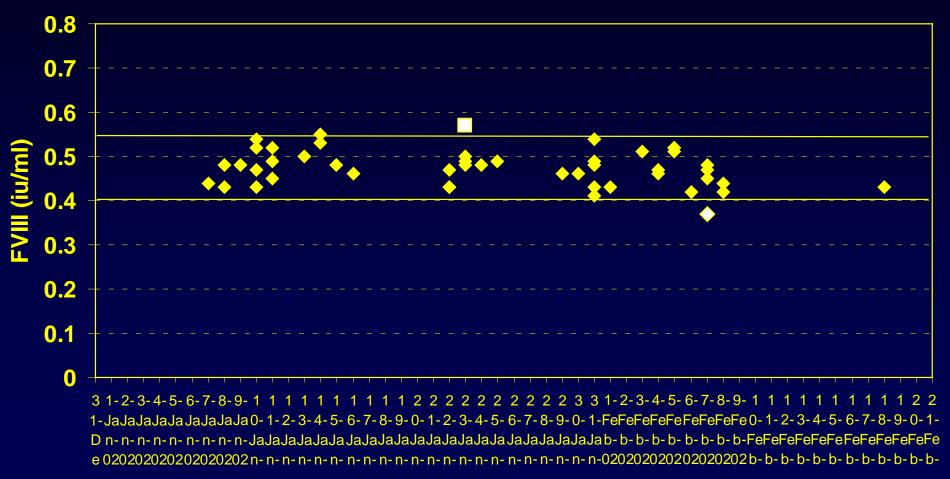
IQC materials

Similar in properties to test sample

All vials or aliquots identical

 Stable over period of use (lyophilised,frozen)

IQC for Coagulation Tests


Display target values

Maintain a cumulative record

 Keep a written procedure for intervention with record of actions taken

Internal Quality Control results for FVIII:C Assay

Target range is mean ± 2sd of 20 determinations

IQC out of target range?

- Suspend new patient testing and reporting of results since last QC result within limits.
- Re-test to exclude analytical error. Still out?
- Replace QC material and retest. Still out?
- Replace reagents and retest. Still out?
- Suspend method and switch to backup, and contact higher authority

Internal Quality Control

Point of Care INR testing

On-Board QC

- Built into test strips
- Currently
 - -CUC XS and CUC XS Plus
 - -Protime
 - -INRatio
- Useful for strip integrity
- Not all show result and/or range
- Can not give information on strip calibration

Useful but need other form of QC.

IQC Material

The CoaguChek, CoaguChek S and CoaguChek XS Plus devices use lyophilised plasma as IQC material.

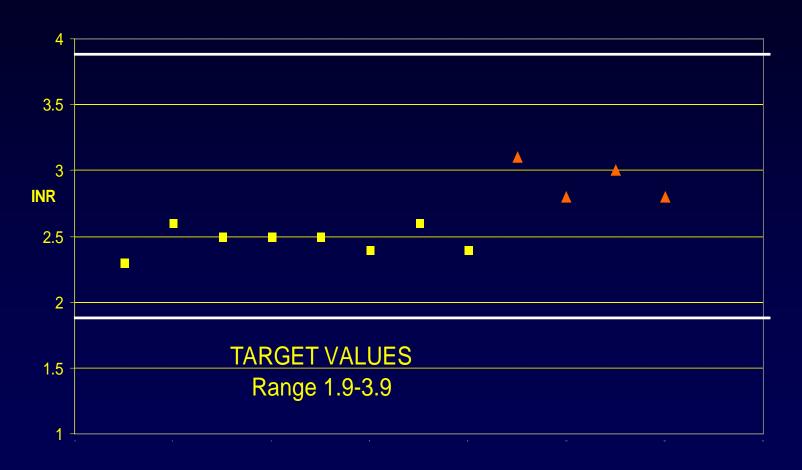
IQC Material

Some devices have IQC material containing lyophilised red blood cells (Hemochron and Protime)

IQC information to record

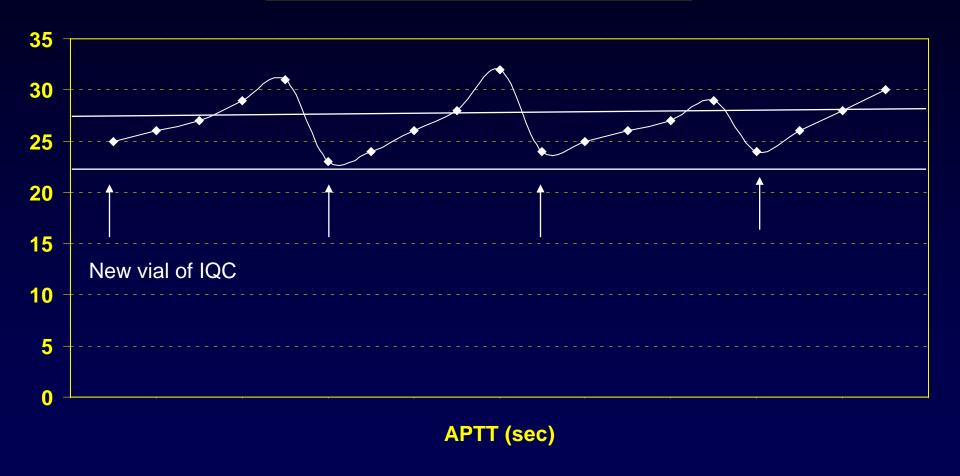
It is essential to keep good records of IQC testing

- Date of test
- Batch of IQC used
- Range for IQC batch
- Batch of test strips used
- Operator ID

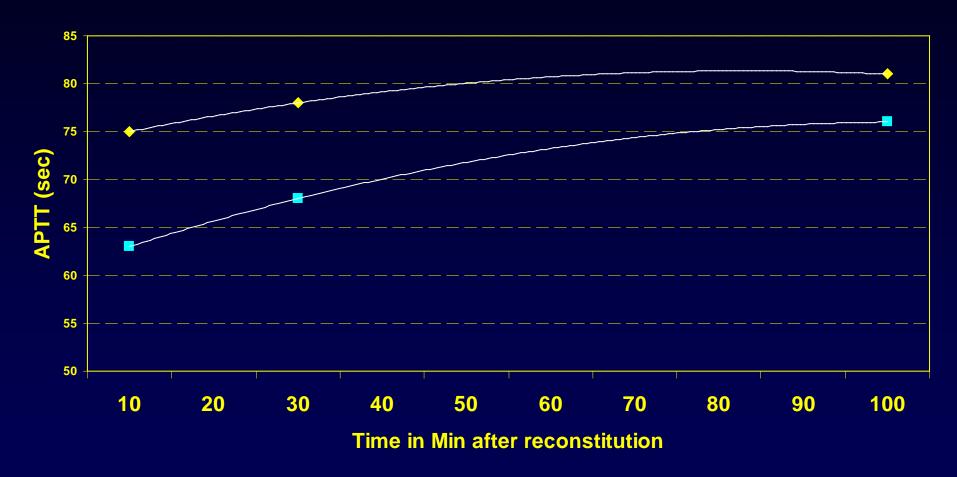

When to test IQC?

 When starting a new batch of test strips

Any unexpected high or low results

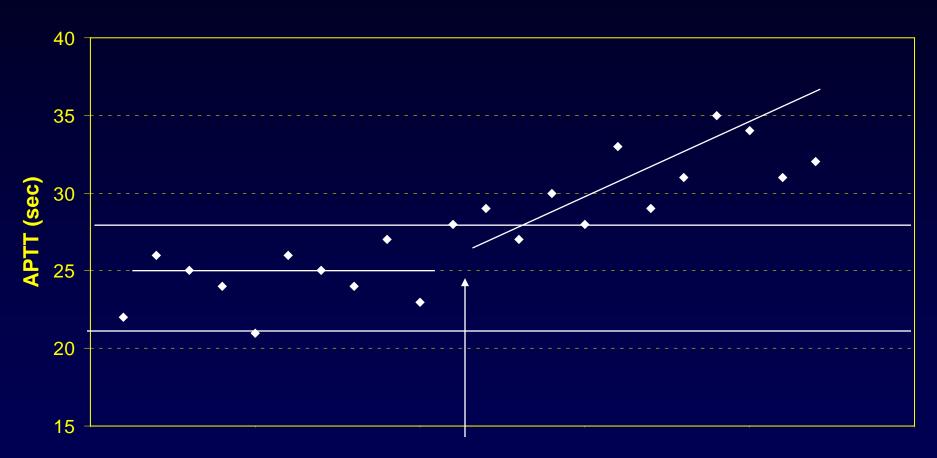

 At least one per clinic (depending on clinic size)

Single lot of IQC shift following change in lot number of test strip



POC INR with excessively wide target range and showing a shift

IQC chart APTT- Unstable IQC sample



Stability of APTT on 2 lyophilised plasmas after reconstituion

pH 8.6 and 8.9 indicates in adequate buffering

IQC _APTT results showing a trend

Trend to higher results as a gradual change in Material, reagent or analyser

Troubleshooting IQC Why 2 levels?

PT 1	PT 2	APTT 1	APTT 2	problem
out	in	out	in	QC 1 material
In	Out	In	out	QC 2 material
out	out	in	in	PT reagent
In	In	Out	Out	APTT reagent
Out	Out	Out	Out	Instrument or common reagent

UK NATIONAL EXTERNAL QUALITY ASSESSMENT SCHEME (NEQAS) for BLOOD COAGULATION

www.ukneqasbc.org

Dr Steve Kitchen
Sheffield Haemophilia and Thrombosis centre & UK NEQAS
Blood Coagulation

UK NEQAS for Blood Coagulation: Surveys

Participation available in the following programmes:

- Blood Coagulation: Level 1 Level 2
- Point of Care / Near Patient Testing (POCT/NPT)
- Homocysteine Assay
- Factor V Leiden / Molecular Genetics of Thrombophilia
- Haemophilia Molecular Genetics

UK NEQAS for Blood Coagulation: Registrations

- 1020 participants registered main prog
- 645 (63%) in UK NHS and private labs
- 16 (2%) manufacturers of reagents/ instruments
- 359 (35%) outside UK in 30 countries

Additionally:

3400 participants in NPT/POCT programme

UK NEQAS for Blood Coagulation: Assistance to the participant

Professional Advice

Technical Advice

- Additional samples for 'troubleshooting'
- Information resource

UK NEQAS for Blood Coagulation: Test Registrations; Level 1

- Prothrombin Time (PT)/INR (Quick and/or capillary methods)
- PT (diagnostic)
- Activated Partial Thromboplastin Time (APTT)
- Heparin Dosage Assessment (HDA)
- Heparin Assay (HA)
- Thrombin Time (TT)
- Fibrinogen evaluation
- Fibrin(ogen) Degradation Products (FDP)/ D-Dimer
- Lupus anticoagulant

UK NEQAS for Blood Coagulation: Test Registrations; Level 2 Assays

- Factor II assay
- Factor V assay
- Factor VII assay
- Factor VIII:C assay
- Factor IX:C assay
- Factor X assay
- Factor XI assay
- Factor XII assay
- Factor XIII screen
- Quantitative VIII inhibitor
- Von Willebrand factor antigen assay
- Von Willebrand factor RCo (activity) assay

UK NEQAS for Blood Coagulation: Test Registrations; Level 2 Thrombophilia

- Antithrombin antigen assay
- Antithrombin activity assay
- Protein C antigen assay
- Protein C activity assay
- Protein S total antigen assay
- Protein S free antigen assay
- Protein S activity assay
- Plasminogen assay
- Activated Protein C resistance assay

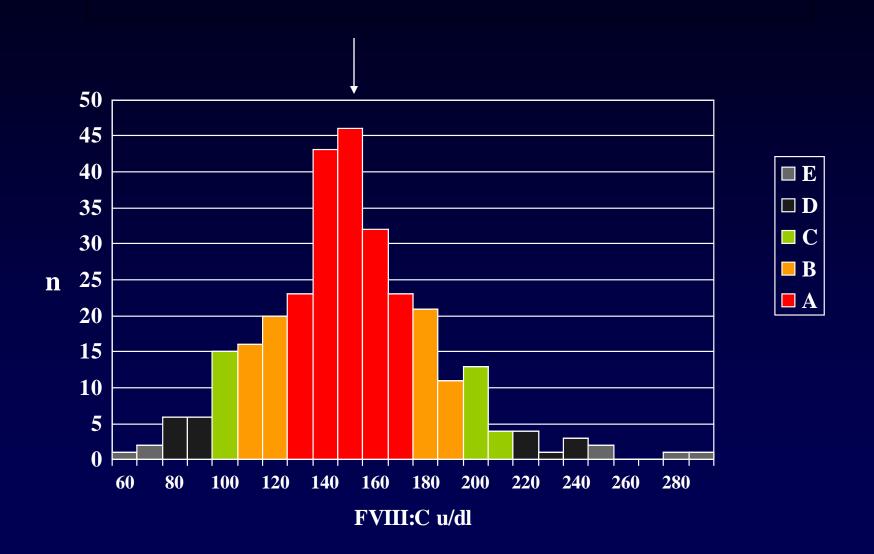
The Importance of EQA

- EQA retrospective analysis comparing results between laboratories and between methods
- EQA is required to confirm that results are accurate and are in agreement with those of other centres

EQA can identify:

- problems a laboratory has with a particular test
- problems with a particular method
- problems with reference plasmas
- problems in diagnosis or interpretation of results

Principles of EQA


- Lyophilised samples distributed to participants
- Participants instructed to perform specific tests (usual method)
- Results returned to EQA centre for analysis
- Individual laboratory report issued
- Overall survey review published

EQA Performance Analysis:Outwith Consensus

- Screen tests (PT; APTT)
 - >15% deviation from median result
- Assays (FVIII:C, FIX:C)
 - Ranked Grading Analysis (A-E)
 - Two consecutive low grades

Target Values

Performance: Persistently outwith consensus

- >15% from reagent group / overall median for screening tests on 3 consecutive occasions
- Three consecutive low grades for assays
 - eg E/E/E, D/D/D, E/C/E, D/E/E

UKNEQAS(Blood Coagulation)

- Persistently 'outwith consensus'
- Communication from Director

Participation in WFH EQA can improve laboratory performance

	Factor VIII		Factor IX	
	Local result median		Local result Median	
Survey 1 2003	79 U/dl	24 U/dl	36 U/dl	91U/dl

Participation in WFH EQA can improve laboratory performance

	Factor VIII		Factor IX		
	Local result	Median	Local result	Median	
Survey 1 2003	79 U/dl	24 U/dl	36 U/dl	91U/dl	
Survey 12 2008	15 U/dl	21 U/dl	56 U/dl	50 U/dl	

Inter- laboratory variation FVIII:C results 2004-9

Survey	Median	Established Centre CV	Emerging centre CV
3	15 IU/dl	27%	30%
4	75 IU/dl	21%	32%
5	14 IU/dl	30%	137%
6	52 IU/dl	14%	26%
13	31IU/dl	18%	25%
17	34 IU/dl	14%	42%

Solving EQA problems Extraction from Database

survey	sample	APTT reagent median	Local result	dev	Local interpretati on
177	FVIII:C 35 IU/dl	1.29	1.08	-16%	Normal
178	FXI 35 U/dl	1.30	1.10	-12%	Normal
179	Normal	1.01	0.85	-15%	Normal
180	FXII 16 U/dl	1.18	0.99	-23%	-

Solving EQA problems Extraction from Database

- Centre contacted programme staff to discuss
- Reference range in use locally 28 to 40 sec
- 14 other users of same reagent/instrument
- Mean normal range 25 to 33.5 sec
- Mean normal value locally therefore 34 versus
 29 elsewhere
- Accurate local APTT would give a low ratio (test/mid normal)

Solving EQA problems Extraction from Database

New normal range introduced

- Following survey (181)
 - Local result 1.17
 - Reagent median 1.17
 - Deviation 0%!
- Local patient results accurate but wrong reference range led to problems of interpretation and missed diagnoses

Improving performance VWF Ag results

Survey	Local result	median	% deviation
10	29 IU/dl	36 IU/dl	20%

Improving performance VWF Ag results

Survey	Local result	median	% deviation
10	29 IU/dl	36 IU/dl	20%
11	7 IU/dl	11 IU/dl	36%

Improving performance VWF Ag results

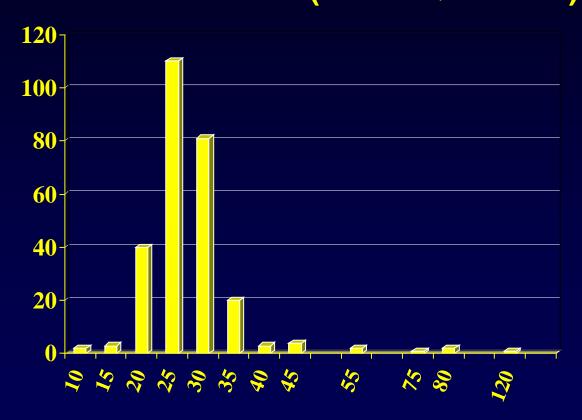
Survey	Local result	median	% deviation
10	29 IU/dl	36 IU/dl	20%
11	7 IU/dl	11 IU/dl	36%
12	41 IU/dl	55 IU/dl	25%

EQA problem solving Repeat samples and SSC reference plasma

- Repeat samples similar results
- SSC reference plasma available via EQAS for trouble shooting
- Local lab checked commercial reference plasma against SSC standard
- Local standard reading low by 27%
- Local WFH EQA results low by 19 35% (mean 27%!!)

EQA problem solving Repeat samples and SSC reference plasma

- Repeat samples similar results
- SSC reference plasma available via EQAS for trouble shooting
- Local lab checked commercial reference plasma against SSC standard
- Local standard reading low by 27%
- Local WFH EQA results low by 19 35% (mean 27%!!)

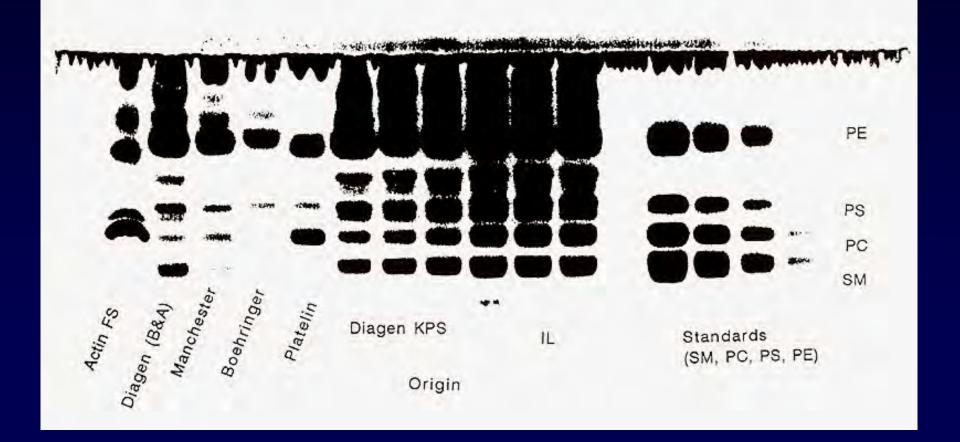

EQA problem solving

Changed reference plasma source

- Next survey
 - local result 20 IU/dl
 - Median23 IU/dl

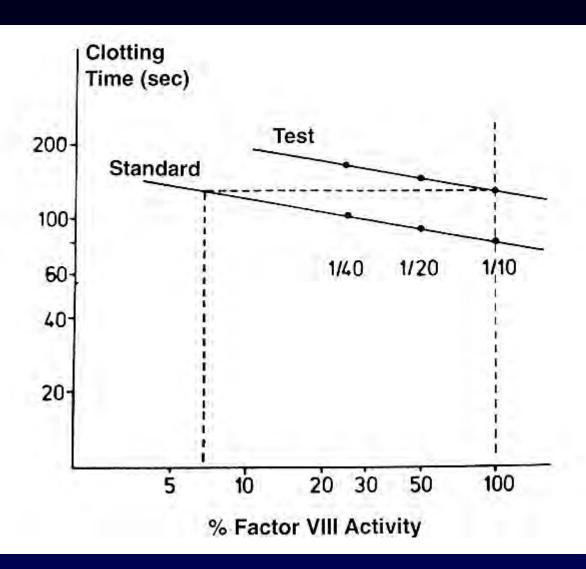
Problem solved!

Factor VIII:C results in Different centres 256 centres (UK NEQAS 1999)


Factor VIII:C (U/dl)

One-stage Factor VIII:C Assays

UK NEQAS Participants (2002)


- 29 APTT reagents
- 22 Substrate plasma
- 18 Reference plasmas
- 26 Coagulometers

Phospholipid quantitation by HPTLC/Laser densitometry

Factor VIII:C – test sample from 2002 Commercial reference plasmas (n>10)

Reference plasma	n	Median (u/dl)
1	46	86
2	81	76
3	86	76
4	14	72
5	12	73
6	10	75
All	299	77

Factor assay design

	1999	2003	2009
n	200	90	160
centres	UK/overseas	UK Haem centres	UK/overseas
factor	VIII:C	IX	VIII:C
Single test dilution	25%	25%	33%
Stored calibration curve	33%	32%	49%

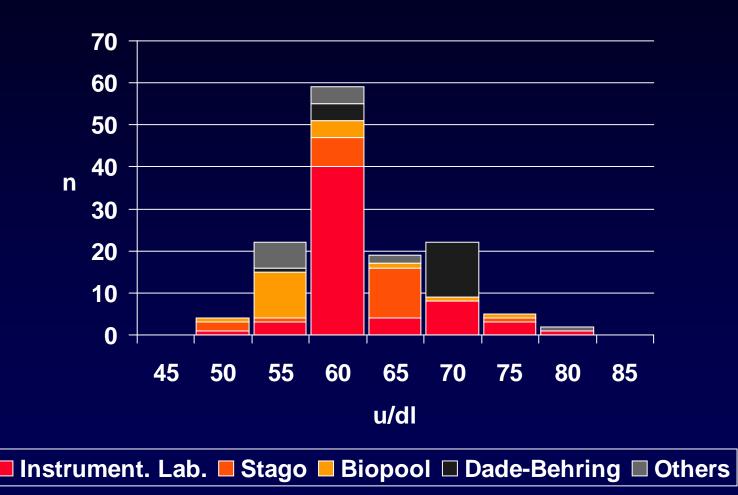
Factor assays - Why 3 test dilutions?

FIX supplementary exercise 2003

Test dilutions	n	Mean FIX U/dl	CV %
1	22	6.3	54%
2	17	6.5	29%
3	42	6.0	23%
ANOVA		ns	P = 0.03

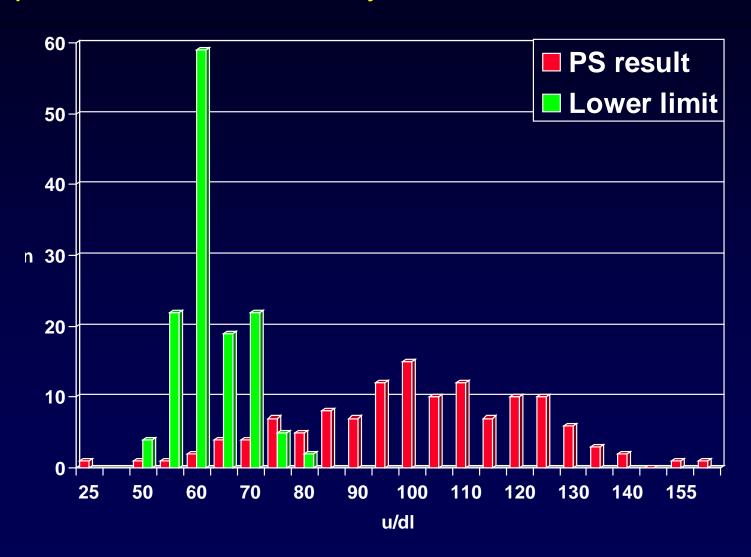
Factor assays - Why 3 test dilutions? FVIII:C 2009

Test dilutions	n	Mean FVIII:C IU/dI	CV %
1	39	6.6	96%
2	18	5.8	28%
3	49	6.1	44% (29%)*

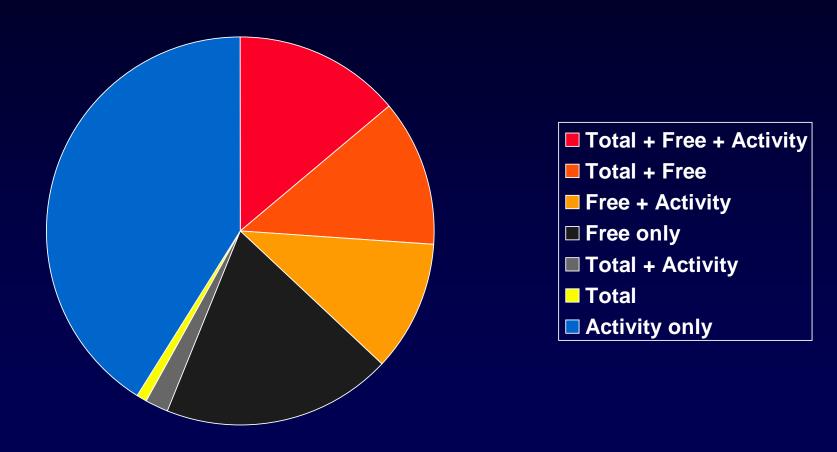

Factor VIII:C

Commercial deficient plasmas (S149 2005)

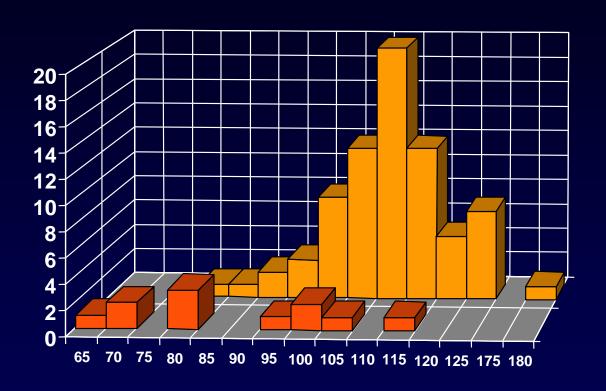
Source	n	Median (u/dl)
A	32	13.0
В	82	15.0
С	7	30.0
D	47	15.0
Е	84	17.0
F	18	12.6
All	327	15.0


C - FVIII < 1 U/dl, FV = 3 U/dl, other factors normal

Lower Limit of Reference Range (PS activity)



PS Activity:


Interpretation is influenced by lower limit of reference range

UK NEQAS Thrombophilia Testing: Protein S Assays employed by participants

PS activity assays

Kit A: n = 72, median = 109.0u/dl

Kit B: n = 11, median = 82.0u/dl

P<0.0001

Familial Thrombophilia Testing Protein S Assay Kits

Manufacturers of Kits A and B quote same reference range!

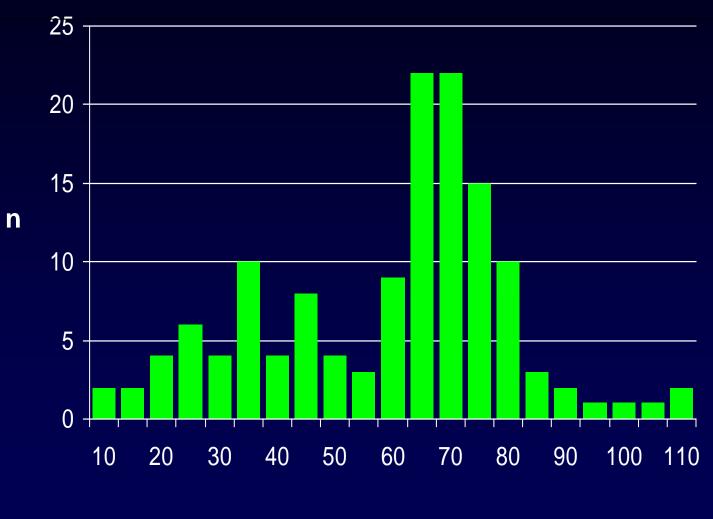
They are clearly different

PS activity

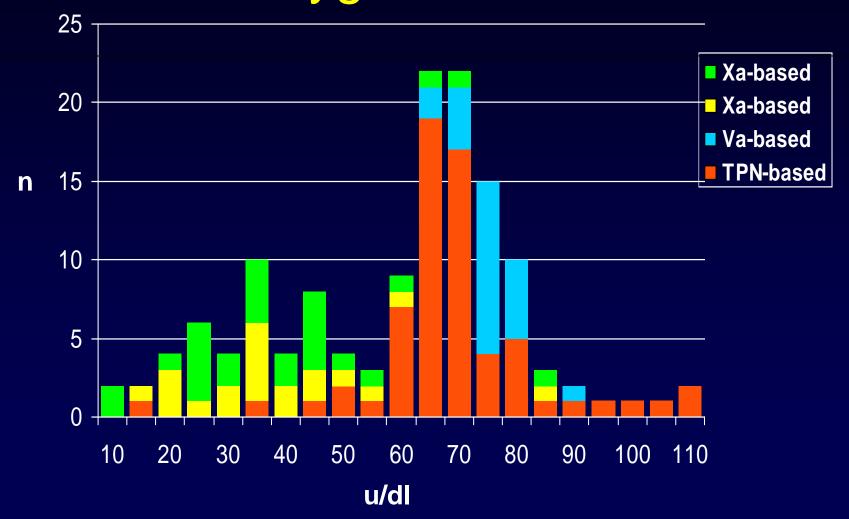
PS reference ranges by method (n=20)

	Bovine TPN	Factor Va	Factor Xa
In-house reference range	>66.6u/dl	>66.8u/d	>74.2u/dl
Manufacturers reference	>61.9u/dl	>65.0u/d	>55.0u/dl
range			

PS activity

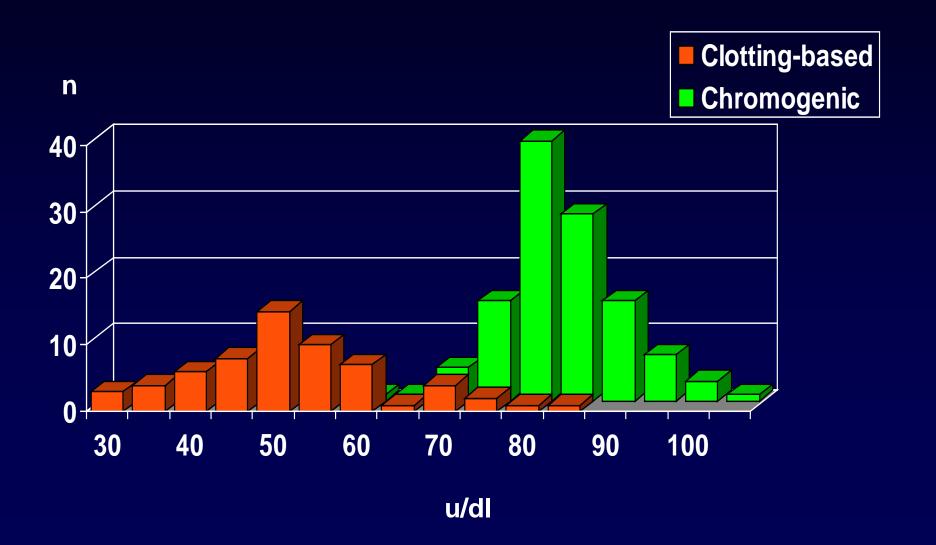

PS reference ranges by method (n=20)

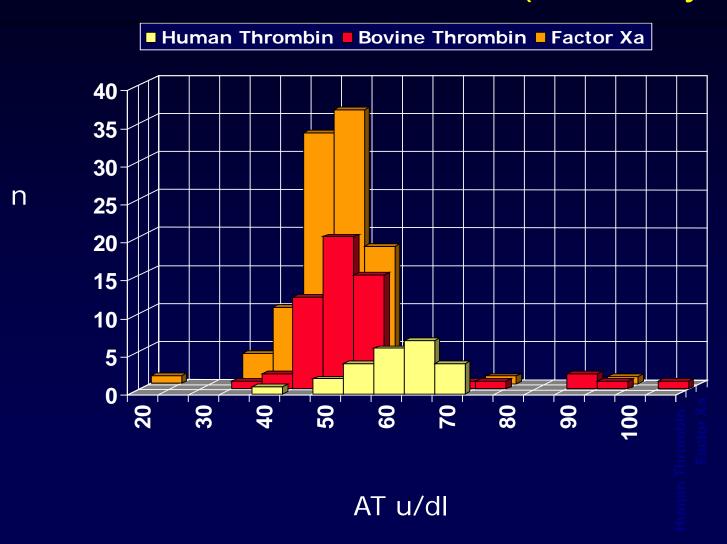
	Bovine TPN	Factor Va	Factor Xa
In-house reference range	>66.6u/dl	>66.8u/d	>74.2u/dl
Manufacturers reference	>61.9u/dl	>65.0u/d	>55.0u/dl
range			


Sensitivity to genetically confirmed PS deficiency (n=23)

	Bovine TPN	Factor Va	Factor Xa
Using in-house range	100%	100%	100%
Using manufacturers range	100%	100%	87%

Protein S activity


Protein S activity Donor homozygous for FV Leiden


Familial Thrombophilia Testing: Problems of interpretation

Factor V Leiden reduces PS activity assays and PC clotting assays!

Protein C activity Donor homozygous for FV Leiden

Antithrombin activity assays: Antithrombin Wobble (Thr85Lys)

Familial Thrombophilia: Molecular Genetic Testing

 Period of Testing 	July 99 - May 02
 Participating Labs 	42 - 76
 No. of distributed sample 	es 36
• Incorrect Results (%)	
- FVL heterozygous	s 1.1
- FVL homozygous	2.8
- P20210A	0.9