Investigating a bleeder?

Dr Steve Kitchen
Sheffield Haemophilia and Thrombosis centre UK
Scientific Director UK NEQAS and WFH/WHO
IEQAS

Making the diagnosis

- Investigating the right patients
- Appropriate laboratory staff and facilities
- Selecting the right tests
- Controlling the tests
- Referral network for complex cases

Von Willebrands Disease (VWD)

- Most common inherited bleeding disorder.
- Arises from deficiencies or defects in von Willebrand factor (VWF).
- •VWF has two primary functions/roles:
 - -'carries' FVIII, and protects/stabilises FVIII:C function.
 - -permits adhesion of platelets to sites of vascular damage.

Clinical picture

- Physical examination - bruising

-Bleeding history (spontaneous/surgery)

-Family history (siblings/parents/grandparents)

-Age, gender, Pr analyticals eg stress, exercise etc

Bleeding scores in VWD

EU study (mainly adults) – Tosetto et al JTH 2006:4:766-773

- 195 controls score median <1 and all but 1 <4
- Index cases median score 9
- Affected family members median 4

Biss et al JTH 2010:8; 950-956 paediatric scoring

VWD – median score 7, control group 0

VWD - Classification

- Type 1: Partial quantitative deficiency (reduced levels of functionally normal VWF).
- Type 2: Qualitative defect (absolute levels of VWF low or normal, but VWF 'function' diminished).
- Type 3: Total quantitative deficiency (VWF 'absent').

Type 1 VWD diagnosis

(ISTH/SSC - Sadler & Rodeghiero 2005)

- Significant mucocutaneous bleeding
- Laboratory tests compatible with type 1 VWD
- Either positive family history or appropriate VWF mutation

ALL 3 CRITERIA REQUIRED

Laboratory Investigation - VWD

- Screening tests (APTT, [PT], FBC/platelet count/Hct, bleeding time or PFA-100
- •Primary 'Diagnostic' assays (FVIII:C, VWF:Ag, VWF:CB, VWF: RCo).
- Secondary 'Confirmatory/VWD-subtype assisting' assays (2A, 2B, 2M - RIPA, VWF:Multimers; 2N -VWF:FVIII binding assay).

Minimal diagnostic criteria

FVIII:C

At least one functional VWF assay (VWF:CB, and/or VWF:RCo)

VWF:Ag

Further investigation

- repeat of initial tests for confirmation

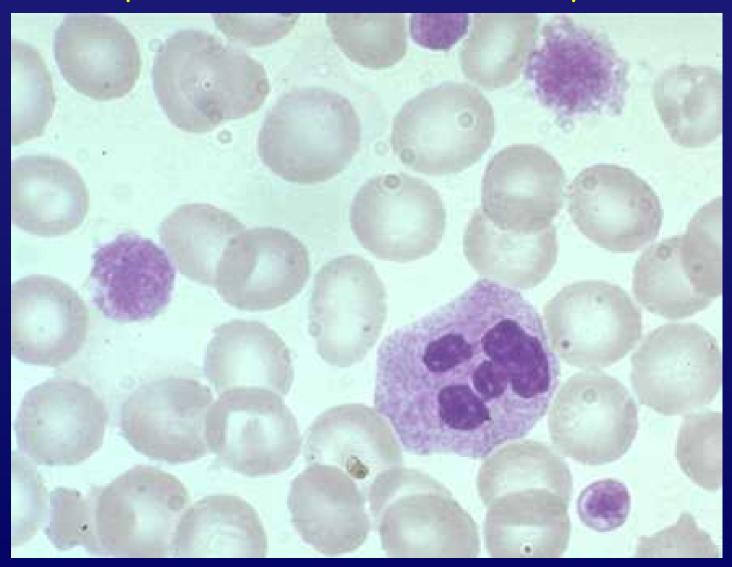
 additional confirmatory/subtype assisting tests (RIPA, VWF:Multimers, VWF:FVIII binding assay).

Samples should not be stored at 4°C

- 39 normal subjects.
- 3.5 hours at 4°C or 22°C before centrifugation
- FVIII, VWFAg and VWF:CB significantly lower lower in 4°C
- Half could be falsely classified as VWD

Favaloro et al 2004

Platelet Investigations


Clinical History

- Personal
 - · Skin and mucous membrane bleeding (petechiae, ecchymoses)
 - Purpura
 - · Recurrent epistaxis
 - · GI haemorrhage
 - · Menorrhagia
 - · Post-operative bleeding, eg post-dental extraction
 - Drug history
- Family
 - · ? Congenital defect

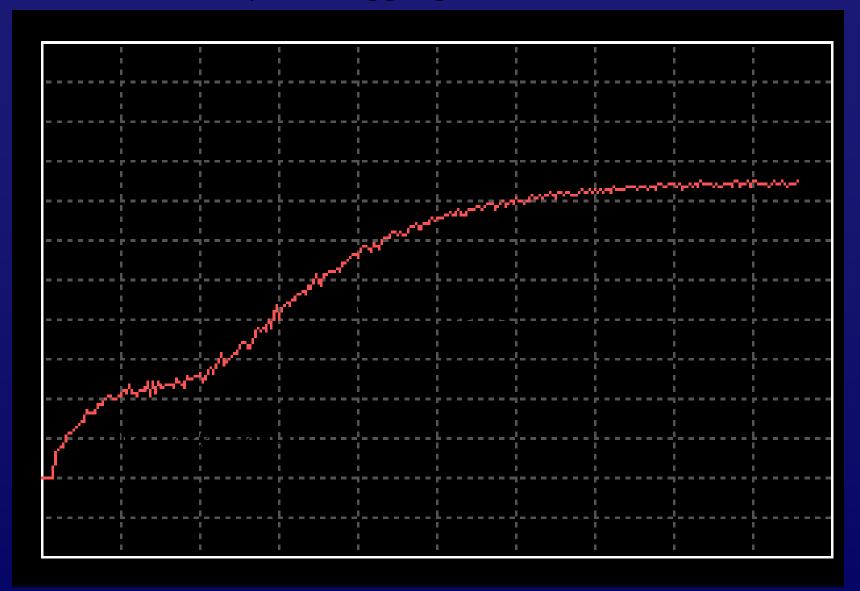
Platelet Investigations "Screening tests"

- · Platelet count thrombocytopaenia, thrombocytosis
- Platelet Size beware rbc fragments, platelet clumps, giant platelets
- Platelet Morphology

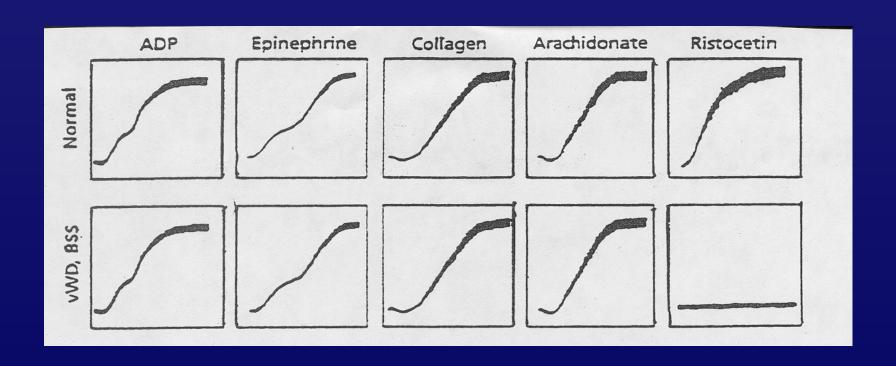
Giant platelets in Bernard Soulier Syndrome

Platelet Investigations "Further investigations"

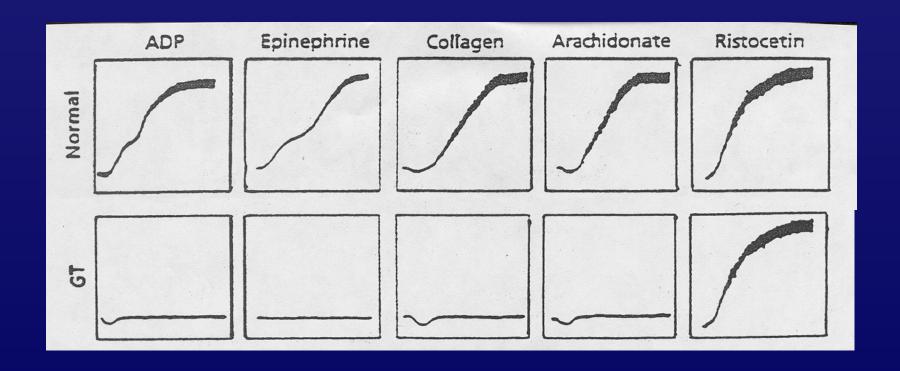
- Platelet Aggregation
- Platelet Nucleotides
- Platelet Glycoproteins
- Thromboxane B2 assay
- Platelet Activation Markers
- Platelet Adhesion
- Clot Retraction
- Electron Microscopy


Methods of platelet Aggregation

- Light transmission
- Supernatant Platelet count
- Platelet Aggregation Ratio
- Fresh blood film
- · Visual assessment
- Electrical Impedance
- Filtration Pressure


Platelet Aggregation -Pretest variables

- Blood collection (clean venepuncture, .106M citrate, RT°)
- Time of testing (>20min, <2hrs)
- Centrifugation (PRP: 200 x g, 10-15min)
- Platelet count of PRP (~300 x 109/l)
- pH (7.7-8.0)
- Mixing/stir speeds (800-1000rpm)
- PCV (citrate may need adjusting)
- Temperature (storage RT, testing 37°)
- Lipaemia (reduces measured response)
- Red cells/granulocytes in PRP (affects measured response)


Biphasic aggregation curve

Bernard-Soulier Syndrome

Glanzmann's Thrombasthenia

Storage pool disorders

- More common than BSS or GT
- Storage pool defects
 - Dense body defects: storage/release of ADP, Serotonin
 - "Grey platelet syndrome" congenital or acquired a-granule defect
- Signal processing defects
 - Particularly acquired defects, drug-induced
- Primary aggregation responses, particularly with ADP
- · Confirmation with further platelet investigations

Platelet nucleotides

- HPLC Bioluminescence
 - ATP + luciferin + luciferase = light emission
 - ADP converted to ATP
 - Low levels (nmol/plt) or altered ATP/ADP ratio can indicate SPD

Making the diagnosis

- Investigating the right patients
- Appropriate laboratory staff and facilities
- Selecting the right tests
- Controlling the tests
- Referral network for complex cases

DIAGNOSIS OF HAEMOPHILIA AND OTHER BLEEDING DISORDERS

A LABORATORY MANUAL

Steve Kitchen, PhD

WFH Laboratory Training Specialist Sheffield Haemophilia and Thrombosis Centre Royal Hallamshire Hospital Sheffield, UK

Angus McCraw

WFH Laboratory Training Specialist Katharine Dormandy Haemophilia Centre and Haemostasis Unit Royal Free Hospital London, UK

Prepared for THE WORLD FEDERATION OF HEALOPHILIA LABORATORY SCIENCES COMMITTEE

WORLD PEDERATION OF HEMOPHIES PEDERATION MONDRALE DE L'EMPOPHIES PEDERATION MENDRALE DE L'EMPOPHIES

WFH Laboratory manual Diagnosis of Bleeding Disorders

- Sample collection & handling
- Reference Ranges
- Quality Control and Assurance
- Screening Tests

- Factor Assay Design
- Reference or Standard plasmas
- Diagnosis of VWD and other disorders

Anticoagulation of Blood

- 9 parts blood decalcified with 1 part anticoagulant
- Trisodium citrate (dihydrate)
- 0.109M (3.2%)
- 0.129M (3.8%)
- 0.109M recommended by WFH, WHO,
 CLSI
- Both continue to be used

Sample underfilling - Effect of citrate concentration

Mimimum fill volume

0.109M citrate

• PT (Innovin) 60%

• APTT (Actin FS) 70%

0.129M citrate

• PT 70%

• APTT 90%

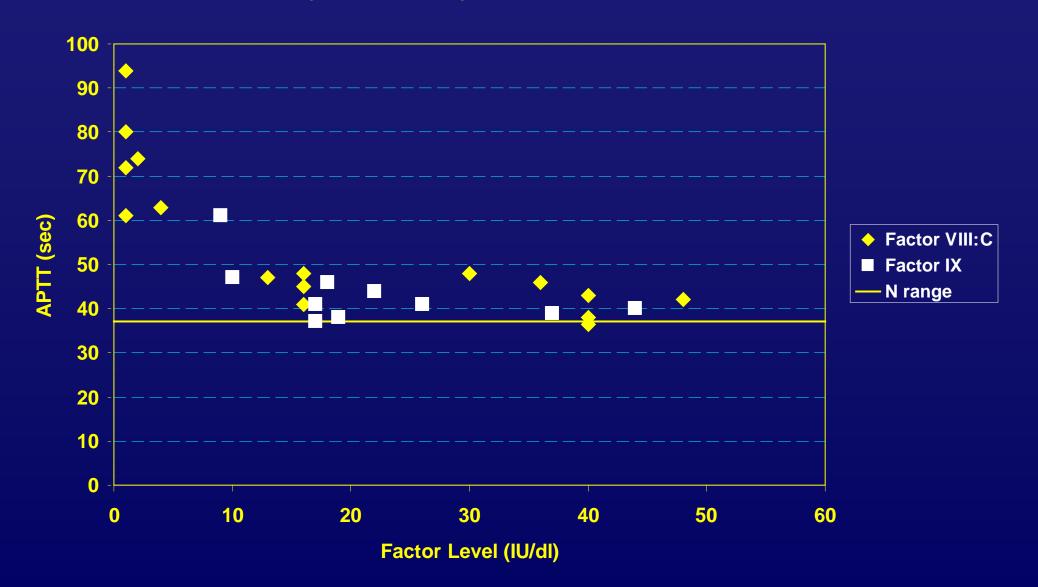
Adcock et al 1998

Other Sample variables

- Anaemia and polycythaemia
- Under (over) filling
- Composition (glass, plastic etc)
- Storage time and temperature
- Centrifugation conditions
- Air space in sample (heparin control)

Changing Tubes?

- Review Scientific literature
- Review manufacturers data
- Assess locally where necessary
- Pay particular attention to screening tests
- Effects may be reagent specific
- Expect differences unless evidence to contrary
- Consider new local normal range


Reference ranges - 1

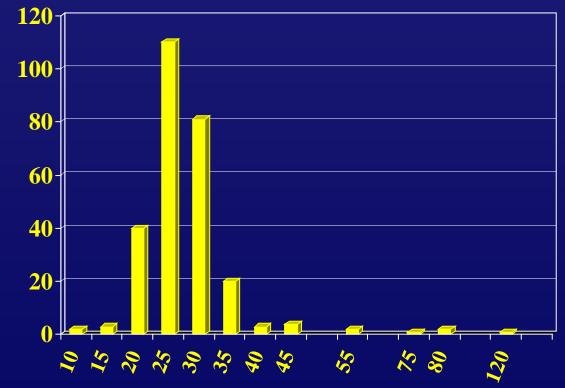
- Establish locally
- Use literature as a guide
- Normal subjects
- Identical collection, processing and analysis as patient samples
- Assess when introducing or altering a method
- Screening Tests with each new lot number

Reference ranges - 2

- N = 25-30 is adequate for most tests in diagnosis of bleeding disorders
- Inspect data in a graphical form
- Clear/statistical outliers can be excluded
- Mean +/- 2 sd if a normal distribution
- Alternatives- log normal, exclusion of extreme 2.5% from either end
- Normal range is only a guide

Sensitivity of APTT to deficiency of FVIII or IX Synthasil/Sysmex CA series

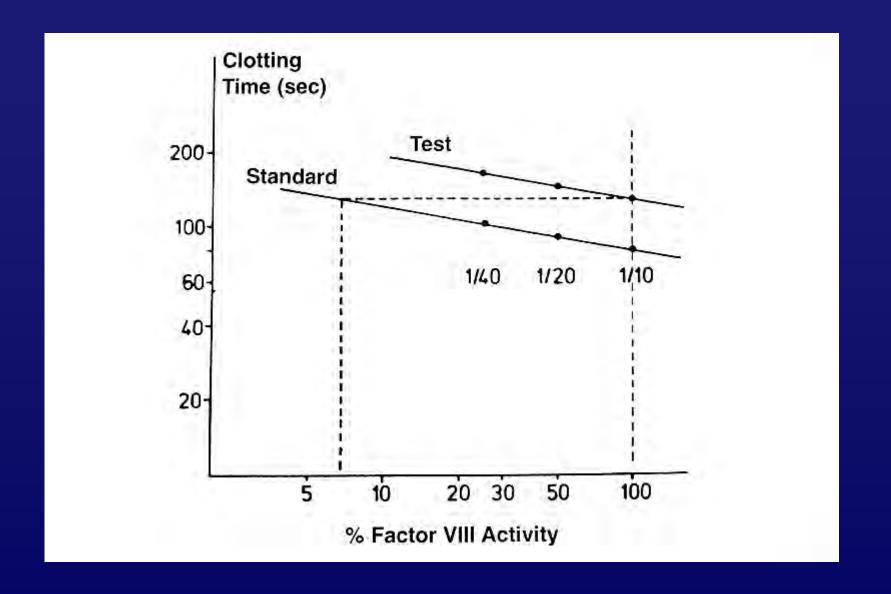
Limitations of APTT as a screening test


- Obligatory carrier of Haem B, FIX- 35 IU/dl
- APTT 32 sec (Normal range 25-35sec)
- Previously prolonged APTT three times with same reagent
- FVIII:C 280 IU/dl
- Acute phase related increase in FVIII can normalise APTT when FIX (or FXI reduced)

Making the diagnosis

- Investigating the right patients
- Appropriate laboratory staff and facilities
- Selecting the right tests
- Controlling the tests
- Referral network for complex cases

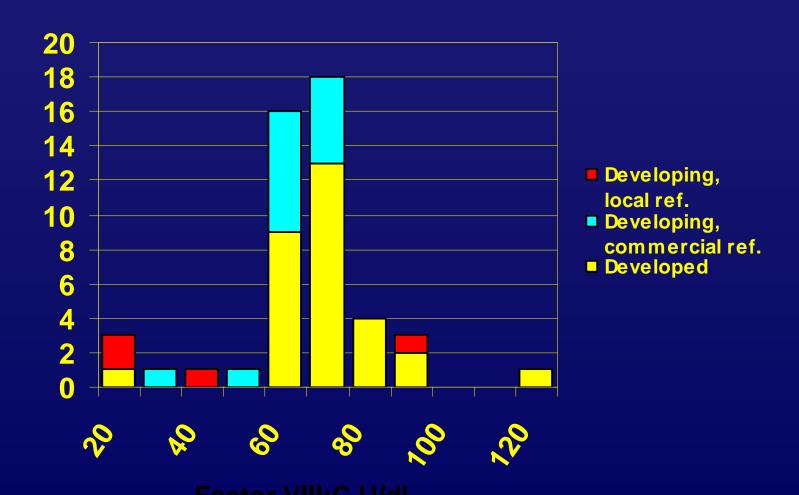
Factor VIII:C results in Different centres **256 centres** (UK NEQAS 1999)



5 centres < 15 u/dl

6 centres > 50 u/dl

Factor VIII:C (U/dl)



Factor assays - Why 3 test dilutions? FIX supplementary exercise 2003

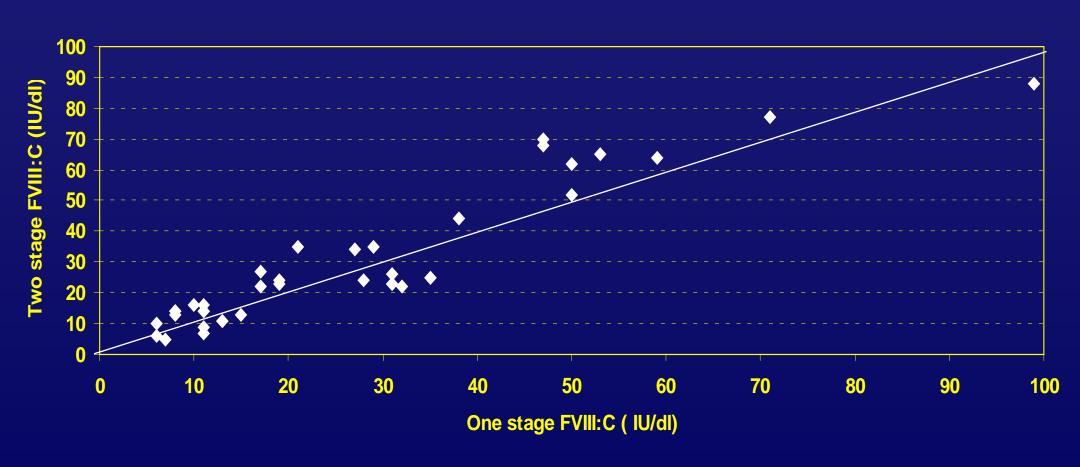
n	Mean FIX	CV %
22	6.3	54%
17	6.5	29%
42	6.0	23%
	ns	P = 0.03
	22 17	U/dl 22 6.3 17 6.5 42 6.0

WFH Survey 4, 2005: FVIII:C (UK NEQAS median 75.0 IU/dl)

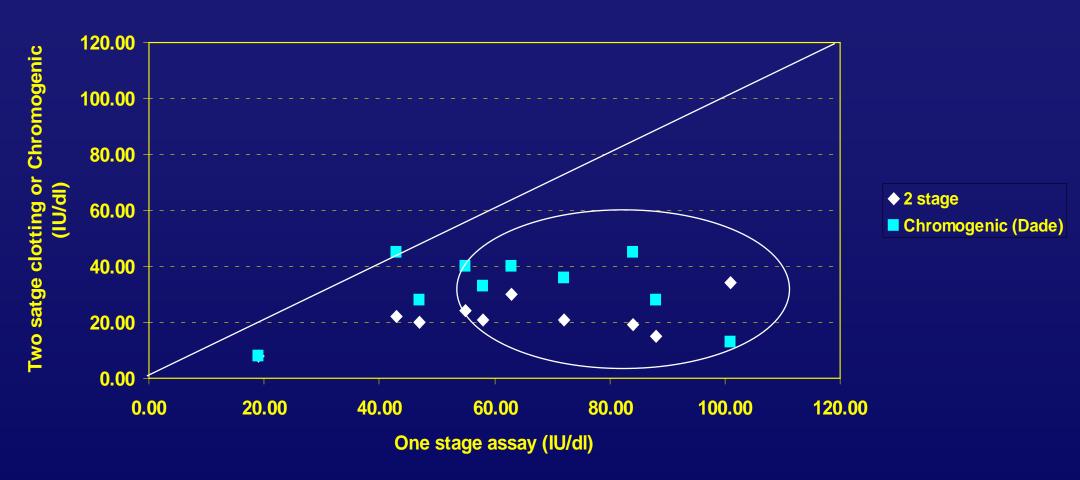
Developing Country results by source of reference plasma

Factor VIII:C — NEQAS survey Commercial reference plasmas (n>10)

Source	n	Median (u/dl)
1	46	86
2	81	76
3	86	76
4	14	72
5	12	73
6	10	75
All	299	77


Factor VIII:C

Commercial deficient plasmas (S149 2005)


Source	n	Median (u/dl)
Α	32	13.0
В	82	15.0
С	7	30.0
D	47	15.0
Е	84	17.0
F	18	12.6
All	327	15.0

C - FVIII < 1 U/dl, FV = 3 U/dl, other factors normal

One Stage and Two stage (clotting) FVIII:C results in previously diagnosed mild Haemophilia A (75-80% of patients)

Factor VIII assays in Mild Haemophilia A 7/68 patients have normal 1 stage, reduced 2 stage

Normal One stage FVIII and Normal APTT in ~ 10% Sheffield cases

Common discrepancy

Bleeding symptoms consistent with mild haemophilia

(ie consistent with the lower result)

How common is this? (Rodgers et al 2008)

97 mild Haem A (many genetically confirmed)

39 have discrepant phenotype

• 8 (8%) have normal one stage FVIII:C

Bleeding consistent with mild haemophilia

Common discrepancy

	Patients screened	Discrepancy	Normal 1 stage	
France	73 mild/mod	11 (15%)	0	Parquet- Gernez, et al 1988
Australia	97 mild	39 (40%)	8	Rodgers et al 2008
UK	68 mild	10 (15%)	7	Sheffield data
Spain	163 mild	24 (15%)	0	Cid et al 2008
Denmark	92 mild	36% of families	0	Poulsen et al 2009

Different chromogenic assays in discrepant patients

	Mean	Range	Incubation time
	IU/dl	IU/dl	
Coamatic	26	17 - 34	150 sec
Dade-Behring	41	33 - 47	100 sec
Hyphen	22	13 - 31	300 sec
One stage	39	32 - 55	-
Two stage	10	6 - 14	-

Rodgers et al 2008.

Conclusions – Common Discrepancy

- Occurs in 10-35% of mild haemophilia A
- Totally normal FVIII:C by one stage in ~ 5 -10% of mild Haem A
- APTT totally and consistently normal in these 5-10%
- Bleeding consistent with mild haemophilia

Recommendations - 1

- 1. Use a single citrate concentration and sample type where possible
- 2. Determine local normal ranges using same sample collection and processing as for patients.
- 3. Consider the performance characteristics & limitations of the test.

Recommendations 2 – Assays

- Reference plasma traceable to WHO standards where available
- Calibration curve with each group of tests
- 3 dilutions of test plasma
- QC sample with each group of tests
- EQA where available
- Two types of FVIII assay to detect all cases

Convincing History but nothing identified?

- Platelet disorder (eg storage pool disease) with normal initial aggregation
- Mild Haemophilia A with normal One satge FVIII
- Factor XIII deficiency
- Type 2M VWD with normal VWF:RCo and reduced CBA
- Fibrinolytic problem (eg alpha 2 Antiplasmin)

2M VWD with normal VWF:RCo

(Keeling et al Haemophilia 2011

- 17 year old girl, menorrhagia, epostaxis, Bleeding score 5
- FVIII:C 107 IU/dl, VWF:Ag 73 IU/dl
- VWF:RCo 88 IU/dl
- CBA (Corgenix, Equine type III) 10, 27 IU/dl (on 2 visits)
- CBA (2nd visit) –(Technoclone, pepsin digested Human type III) 66 IU/dl

Laboratory tests and assays should be used in conjunction with a careful personal and family history.

